На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

ТАЙНЫ ПЛАНЕТЫ ЗЕМЛЯ

25 708 подписчиков

Свежие комментарии

  • Светлана Войтова (Микова)
    Очень интересно. Но очень мало доказательств.👍Самая страшная ка...
  • Наталья Юзеева
    У меня есть эти знки😉 в отличии от некоторых.5 знаков на руках...
  • ВЯЧЕСЛАВ
    Вообще-то вопросы поставлены и, на мой взгляд, совершенно справедливо. Не могли в 30-е годы строить метрополитен с та...Не строили, а отк...

Мощнейший в мире рентгеновский лазер превратил атом в "черную дыру"

Обстрел атома йода сверхмощным рентгеновским лазером превратил его в аналог черной дыры

Рентгеновский лазер LCLS позволил физикам "катапультировать" почти все электроны одного атома в молекуле и временно превратить его в миниатюрный аналог черной дыры, притягивающей к себе электроны с силой ее космического собрата, говорится в статье, опубликованной в журнале Nature.

"Сила, с которой электроны притягивались к атому йода в данном случае, была гораздо большей, чем та, которую бы вырабатывала, к примеру, черная дыра с массой в десять Солнц.

В принципе, гравитационное поле любой черной дыры звездной массы неспособно сопоставимым образом действовать на электрон, даже если его вплотную приблизить к горизонту событий", — рассказывает Робин Сантра (Robin Santra) из Немецкого синхротронного центра DESY.

Сантра и его коллеги создали подобную миниатюрную черную дыру, сфокусировав весь луч рентгеновского лазера LCLS, пока самой мощной установки подобного рода в мире, на точке шириной всего в 100 нанометров. Это примерно равно длине крупной органической молекулы и в несколько сотен раз меньше ширины пучка, обычно применяющегося в опытах с подобными излучателями.

Благодаря этому мощность лазерного пучка достигла десяти миллиардов гигаватт на квадратный сантиметр, вплотную подобравшись к отметке, где начинают проявляться ультрарелятивистские эффекты и свет начинает спонтанно превращаться в материю и антиматерию.

Столкновение такого импульса с одиночными атомами ксенона и йода, как показали первые опыты физиков, приводит к тому, что они теряют фактически все свои электроны и приобретают фантастически высокую степень окисления — +48 или +47, в результате чего возникает рекордно высокий положительный заряд.

Ученые решили проверить, как этот заряд может повлиять на поведение других молекул и атомов, соединив йод с молекулами метана и этана, "прозрачными" для рентгена и не реагирующими на облучение подобными лучами.

Результаты этих опытов оказались фантастическими — облучение таких молекул лазером всего на протяжении 30 наносекунд привело к тому, что атомы йода превратились в своеобразные электрические черные дыры на мгновения после того, как их прошил рентгеновский пучок.

Эти атомы, вопреки ожиданиям ученых, потеряли гораздо больше электронов — не 46 или 47, а 53 или 54 частицы. На этом процесс не остановился, и атомы йода, подобно сверхмассивным черным дырам, начали перетягивать на себя электроны из других частей молекулы, разгонять и "выплевывать" их в виде пучков, похожих на выбросы их космических "кузенов".

В результате этого вся молекула йодметана фактически мгновенно дезинтегрировала себя, прожив всего триллионную долю секунды после начала обстрела лазером. Нечто подобное, как полагают ученые, может происходить при контакте живых организмов с рентгеновским излучением, и изучение этого процесса поможет нам понять, как можно снизить или нейтрализовать вред от радиации.

"Йодметан — относительно простая молекула, которая помогает нам понимать то, что происходит с органическими молекулами при их повреждении радиацией. Мы полагаем, что эта реакция протекает еще более бурно в йодэтане и других сложных молекулах, где йод может выбрасывать до 60 электронов, однако пока мы не знаем, как его можно описать. Решение этой задачи является нашей следующей целью", — заключает Артем Руденко из университета штата Канзас (США), первый автор статьи.

https://ria.ru/science/2017053...

Ссылка на первоисточник
наверх